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Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these
fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon
collision. The new particles formed in this process are larger and follow the equation of motion with a new
parameter. These particles can in turn fragment when they reach a certain size or shear forces become suffi-
ciently large. The resulting system consists of a large set of coexisting dynamical systems with a varying
number of particles. We find that the combination of aggregation and fragmentation leads to an asymptotic
steady state. The asymptotic particle size distribution depends on the mechanism of fragmentation. The size
distributions resulting from this model are consistent with those found in raindrop statistics and in stirring tank
experiments.
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There is an increasing recent interest in the advection of
inertial particles in fluid flows �1�. This comes in part from
the fact that the dynamics of these particles are dissipative,
which leads in most flows to a preferential accumulation on
chaotic, fractal attractors. Previous studies concentrated
mainly on noninteracting particles, in spite of the fact that
accumulation leads unavoidably to strong mutual interac-
tions of different kinds.

Here we consider the interaction of these particles in the
form of aggregation and fragmentation. When two particles
come sufficiently close, they aggregate to a larger one, ob-
serving mass and momentum conservation. If the size ex-
ceeds a certain threshold value, which depends on a property,
the stickiness � of the particles, or other conditions are ful-
filled, they break up into smaller pieces. This is the basic
mechanism underlying such processes in nature like raindrop
formation in clouds �2� or the sedimentation of marine ag-
gregates �3� in the ocean. We demonstrate that for the study
of such processes a particle based approach may be a useful
addition to the usual population-balance equation approach
�4�. The latter is based on the assumption of well-mixed
particles while our approach takes the incomplete mixing of
inertial particles in fluids explicitly into account.

Although concepts of dynamical systems theory can use-
fully be applied, we show that the entire dynamics is much
more complex than that of any usual dynamical system. The
dynamics of particles of any size are governed by the same
type of equations of motion, but with different parameters
since new particles will have new radii. Even if one consid-
ers a finite number n of possible sizes �size classes�, there are
n equations of motion with different size-dependent param-
eters. We thus have a union of n dynamical systems and,
moreover, the number of particles in each size class is chang-
ing in time. It is useful to interpret the attractors of the dif-
ferent size classes �of the noninteracting problem� as the
skeleton of the full dynamics. Aggregation and fragmenta-
tion generates transitions from one attractor to another one. It
is this permanent wandering among different attractors
which characterizes the new dynamics.

We show that the combination of aggregation and frag-

mentation, superimposed on chaotic inertial advection dy-
namics, leads to a convergence to an asymptotic steady state,
and this steady state is unique for the cases studied here. We
find that the dynamics and the steady state depend on the
fragmentation rule. For fragmentation due to shear we
present a simple scaling relationship for the asymptotic av-
erage size of the particles. Furthermore, the shape of the
asymptotic size distribution can be represented in a scaled
form independent of the stickiness �.

For simplicity we consider spherical aerosoles, i.e., par-
ticles much denser than the ambient fluid, and assume that
the difference between their velocity ṙ and the fluid velocity
u=u(r�t� , t) at the same position is sufficiently small so that
the drag force is proportional to this difference �Stokes drag�.
The dimensionless form of the governing equation for the
path r�t� of such aerosols subjected to drag and gravity, reads
as �5�:

r̈ = A�u − ṙ − Wn� , �1�

where n is a unit vector pointing upwards in the vertical
direction. Throughout this paper we consider the vertical di-
rection along the axis y. The inertia parameter A �larger val-
ues for smaller particle size� can be written in terms of the
densities �p and � f of the aerosol and of the fluid, respec-
tively, the radius a of the aerosols, the fluids kinematic vis-
cosity �, and the characteristic length L and velocity U of the
flow. It is A=R /St, where R=� f /�p�1 is the density ratio
and St= �2a2U� / �9�L� is the so-called Stokes number of the
aerosol �8�. W=2a2�pg / �9�� fU� is the dimensionless settling
velocity in a medium at rest.

Every particle produces perturbations in the flow that de-
cay inversely proportional to the distance from the particle
�6�. Here we assume a dilute regime, where the local con-
centration of particles is low enough, so that particle-particle
interaction can be neglected �7�.

During aggregation and fragmentation the radius of par-
ticles changes and so do the parameters A and W. The small-
est �primary� particles considered in this model have dimen-
sionless radius a1=5 /301/3�10−5, mass m1=�p4 /3�a1
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inertia parameter A1=7, and settling velocity W1=0.4 /A1.
All larger particles are assumed to consist of an integer num-
ber of these primary particles. Thirty different size classes
are considered. A particle that consists of 	 �	=1, . . . ,30 is
called size class index� primary particles has a radius a	
=	1/3a1, an inertia parameter A	= �a1 /a	�2A1=	−2/3A1 and a
settling velocity W	=	2/3W1. The largest particle therefore
has a radius a30=5�10−5.

Aggregation takes place upon collision, i.e., if two par-
ticles, say of radius ai and aj, come closer than a threshold.
Mass conservation requires the radius of the new particle to
be anew

3 =ai
3+aj

3. For the size class index this implies a linear
rule: 	new=	i+	 j, which determines the new inertia param-
eter via A	new

=	new
−2/3A1. The velocity of the new particle fol-

lows from momentum conservation.
Fragmentation. We apply one of the following rules: �i�

Size-limiting fragmentation: If a particle becomes larger than
the maximum radius a30, it is broken up into two smaller
fragments whose radii are chosen randomly, with a uniform
distribution between a1 and half the original radius. If any
fragment is larger than a30 this process is repeated, until no
fragment exceeds a30. �ii� Shear fragmentation takes place if
the velocity gradient is too large. More specifically, the ve-
locity gradient is evaluated across each particle both in the
horizontal and in the vertical direction. If the maximum in
any direction exceeds a threshold value, the particle is bro-
ken up into two smaller parts in the same way as for size-
limiting fragmentation. While size-limiting fragmentation is
dominant for raindrops �2�, shear fragmentation determines
the breakup of marine aggregates �9�.

Since for marine aggregates the threshold gradient be-
comes smaller for larger particles �9�, we write

„grad�u�…th = �a1/a = �	−1/3. �2�

Coefficient � represents the “stickiness” of the particles.
Whatever rule is taken, the result is the reversed process of
aggregation: two new particles are formed from an old one
with the size class indices: 	i,new+	 j,new=	old. The centers of
the new particles are placed along a line segment in a ran-
dom direction so that their distance equals the sum of their
radii. Momentum is conserved. For simplicity we assume
that the new particles have the same velocity as the old one.
Shear fragmentation is applied together with size-limiting
fragmentation to keep the maximum number of occurring
size classes at 30.

At the instant of both the aggregation and the fragmenta-
tion process there is a sudden change in the dynamics: the
number of particles jumps in three among the 30 available
dynamical systems defined by the size classes.

For convenience, we treat the case where the fluid flow is
two dimensional, therefore the phase space of the advection
dynamics is four dimensional. We use the convection model
of �10� with dimensionless velocity field

u�x,y,t� = �1 + k sin�
t��� sin�2�x�cos�2�y�
− cos�2�x�sin�2�y�

� , �3�

where k=2.72 is the amplitude and 
=� is the frequency of
the periodic forcing. The fluid flow itself is laminar, but the

dynamics of the inertial particles can be chaotic. Because of
the spatial periodicity of the flow and the resulting spatial
periodicity of the attractors the total particle mass M in each
1�1 unit cell remains the same over time. The dynamics can
therefore be restricted to one cell. The characteristic size
and velocity of the flow are therefore L=1, U=1,
respectively.

In the numerical realization of the problem the particles
are advected without any interaction over a time interval �t
=T /20 at the end of which first aggregation and then frag-
mentation take place, instantly. This is repeated after every
time step �t. To carry out the aggregation process, the
distance between particles is calculated and all particles
within a distance less than the sum of their radii
aggregate.

As an initial condition we take 105 particles in the small-
est size class and no particles in other size classes. Further-
more, particles are uniformly distributed over the entire con-
figuration space with velocities matching that of the fluid.
This choice fixes the total mass of the system to be M
=105m1.

Before presenting the results obtained for the full dynam-
ics, it is instructive to see the attractors of the noninteracting
problem. Figure 1 presents the attractors for the smallest, an
intermediate, and the largest size classes. The extension of
the attractor seems to grow almost monotonically with the
size class index, except for a few intermediate size classes
�	=9, . . . ,14�, where the attractor size decreases or the at-
tractor becomes periodic.

In order to understand the full dynamics, we include first
the simplest fragmentation process, the size-limiting frag-
mentation. Figure 2�a� shows the time dependence of the
number N	�t� of particles in a few size classes. The particles
leave the initial size class very quickly. After 20 time units
nearly all other size classes are considerably occupied. In
fact, the population in size class 16 reaches a maximum here,
but decreases again later on. It is the occupation of the larg-
est size classes which continuously increases and then satu-
rates. The total number N�t� of particles �bold line� rapidly
decreases first, but saturates later on. The spatial distribution
of particles �Figs. 2�b� and 2�c�� shows that they move ini-
tially among the more localized attractors characteristic of
small size class indices. Later, the distribution becomes more

FIG. 1. Poincaré section of the attractors of Eq. �1� projected
onto the plane of the flow for inertia parameters �a� A=7 �size class
1�, �b� A=2.778 �size class 16�, and �c� A=2.253 �size class 30�.
The positive Lyapunov exponents are �a� �1=0.108, �b� �1=0.061,
and �c� �1=0.119, �2=0.014. The settling velocity is W=0.4 /A.
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extended in configuration space when size classes with ex-
tended attractors become well occupied, although the total
number of particles is much less than in the initial phase.
While the full dynamics is dominated by transients in be-
tween attractors, the shape of the backbone attractors is
clearly recognizable in the plots.

To follow the convergence towards an asymptotic state,
we found it useful to consider the average size class index
�	�t��=	i=1

30 	iN	i
�t� /N�t�. Figure 3�a� shows the time depen-

dence of this index for both types of fragmentation. It illus-
trates the convergence to an asymptotic steady state for both
fragmentation rules. Initially, aggregation leads to a fast in-
crease in the average particle size class for both fragmenta-
tion rules. Then fragmentation sets in and a balance between
aggregation and fragmentation is reached, with a different
asymptotic average particle size 	
=limt→
�	�t�� for the

two rules. For size-limiting fragmentation the value of 	
 is
almost constant over time, while for shear fragmentation 	


oscillates with the period T of the flow. This is caused by the
periodic change in the fluid flow and the corresponding
change in the shear forces.

For size-limiting fragmentation, 	
 is, in a broad range,
independent of M. For shear fragmentation with M �3
�105m1, 	
�M� increases approximately linearly with M,
while for higher values a saturation of 	
�M� sets in, which
is due to size-limiting fragmentation.

By considering other initial conditions than those men-
tioned above, while keeping the total mass M fixed, the
asymptotic state is found for both rules to be independent of
the chosen initial condition, but for shear fragmentation the
asymptotic state does depend on the value of the stickiness
�.

To illustrate this dependence of the steady state on the
stickiness �, Fig. 3�b� shows how 	
 changes with the sticki-
ness parameter at a fixed M. A drastic increase of 	��� can
be observed in the interval 4���10. It is clear that 	


increases with �, because particles become more resistant to
shear. A quantitative estimate of the shape of this 	
���
curve can be derived by assuming that the threshold velocity
gradient is approximately constant for the size class index
	
. From Eq. �2� it then follows that 	
 depends linearly on
�3. This simple dependence is expected to hold for relatively
small values of � and 	
, where shear fragmentation domi-
nates. It can be seen that for higher values of �, when size-
limiting fragmentation becomes important the 	
��� curve
deviates from this estimate and converges towards a limiting
value 	


�lim� �Fig. 3�b��.
In addition to the average quantities it is natural to inves-

tigate the occupation of the different size classes in the
steady state. Figure 4�a� shows the steady-state histograms vs
the dimensionless radius. For size-limiting fragmentation the
distribution shows one broad peak around smaller size
classes and a second, smaller peak at large size classes with
a sharp drop-off towards zero beyond the maximum size.
This behavior, with two maxima and a sudden drop after the
second peak, is similar to that of observed cloud drop spectra

FIG. 2. Particle numbers vs time, and space distributions for
size-limiting fragmentation. �a� Total number N�t� of particles
�bold—left axis� and the number of particles N	�t� in size class 	
�gray� for 	=1 �left axis�, 	=16 �right axis�, and 	=30 �right axis�.
Distribution of all particles in configuration space at time �b� t=5,
and �c� t=100.
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FIG. 3. �a� Average size class index �	�t�� vs time for size-
limiting fragmentation �upper curve� and shear fragmentation with
�=9 �lower curve�. �b� Asymptotic average size class index for the
same initial particle distribution as a function of the stickiness pa-
rameter �. Squares, numerical results; continuous line, fit 	
��� by
a linear function of �3, based on the data for ��10.
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FIG. 4. Histogram of the particle size distribution. �a� Size class
percentage N	 /N in the steady state vs the dimensionless radius a,
for size limiting and shear fragmentation with �=9. Results for
fragmentation into three parts is also shown �open markers�. �b�
Normalized number of particles versus the relative radius a / �a� for
different values of � �binary splitting�.
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�2�. For shear fragmentation the steady-state distribution also
shows two peaks, but much closer together, with a long tail
in the particle distribution towards larger sizes that goes
smoothly towards zero. For ��5 this distribution is not fully
developed and only shows one peak. In the intermediate �
range, where the distribution is fully developed, but size-
limiting fragmentation is not important, a scaling form
N	 / max�N	� = f�a / �a� � is found ��a� represents the average
radius�, independently of �. All distributions in this range
collapse then onto a single master curve as shown in Fig.
4�b�. This behavior, along with the long tail in the distribu-
tion towards the right-hand side, is typically observed
in shear-fragmentation experiments in stirring tanks
�11�.

We note that our findings are robust with respect to the
number of new particles formed by fragmentation. For in-
stance, in Fig. 4�a� we see that the distributions of particles
for ternary fragmentation are similar to the ones for binary
splitting and only show a slight shift towards smaller size
classes. The same result is found in population balance equa-
tion models, e.g., �11�.

Finally, we mention that in spite of the different steady
states, the size distribution in the initial phase is similar in
the different cases. After short times, we find a roughly ex-
ponential decay. In this early phase, fragmentation is yet in-
active, and the process is dominated by aggregation. This

decay in the short time distribution can be found for all ini-
tial conditions.

In conclusion, we illustrated that an individual modeling
of particles is able to reflect typical properties of aggregation
and fragmentation processes. We found the development of a
balance between aggregation and fragmentation, and a
steady state. The steady-state particle size distributions found
here correspond to those observed in raindrops �size-limiting
fragmentation� and stirring tank experiments �shear fragmen-
tation�. For shear fragmentation the size distributions are
found to follow a scaled form. In addition, the approach
shown here can reflect spatial inhomogeneity and take actual
particle dynamics into account, and could possibly allow for
a much more detailed description of particle interaction. It is
thus more adequate than the usual stochastic, mean-field-like
approach which relies on the assumption that the particles
are well mixed �2�. The presence of chaotic attractors can
ensure a partial mixing only, and hence the assumption is not
valid. An interesting open problem is to extend our study to
three-dimensional �3D� flows.
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